4,526 research outputs found

    UV background fluctuations traced by metal ions at z3z\approx3

    Full text link
    Here we investigate how LyC-opaque systems present in the intergalactic medium at z3z\approx3 can distort the spectral shape of a uniform UV background (UVB) through radiative transfer (RT) effects. With this aim in mind, we perform a multi-frequency RT simulation through a cosmic volume of 10h110h^{-1}~cMpc scale polluted by metals, and self-consistently derive the ions of all the species. The UVB spatial fluctuations are traced by the ratio of HeII \, \rm \scriptstyle II\ and HI \, \rm \scriptstyle I\ column density, η\eta, and the ratio of CIV \,{\rm {\scriptstyle IV\ }} and SiIV \,{\rm {\scriptstyle IV\ }} optical depths, ζ\zeta. We find that: (i) η\eta spatially fluctuates through over-dense systems (Δ\Delta) with statistically significant deviations δη>25\delta\eta >25\% in 18\% of the volume ; (ii) same fluctuations in ζ\zeta are also present in 3434\% of the enriched domain (only 8\% of the total volume) and derive from a combination of RT induced effects and in-homogeneous metal enrichment, both effective in systems with Δ>1.5\Delta > 1.5.Comment: Accepted for pub. in MNRAS after very minor re

    PopIII signatures in the spectra of PopII/I GRBs

    Get PDF
    We investigate signatures of population III (PopIII) stars in the metal-enriched environment of GRBs originating from population II-I (PopII/I) stars by using abundance ratios derived from numerical simulations that follow stellar evolution and chemical enrichment. We find that at z>10z>10 more than 1010% of PopII/I GRBs explode in a medium previously enriched by PopIII stars (we refer to them as GRBII\rightarrowIII). Although the formation of GRBII\rightarrowIII is more frequent than that of pristine PopIII GRBs (GRBIIIs), we find that the expected GRBII\rightarrowIII observed rate is comparable to that of GRBIIIs, due to the usually larger luminosities of these latter. GRBII\rightarrowIII events take place preferentially in small proto-galaxies with stellar masses M104.5107M\rm M_\star \sim 10^{4.5} - 10^7\,\rm M_\odot, star formation rates SFR103101M/yr\rm SFR \sim 10^{-3}-10^{-1}\,\rm M_\odot/yr and metallicities Z104102ZZ \sim 10^{-4}-10^{-2}\,\rm Z_\odot. On the other hand, galaxies with Z<102.8ZZ < 10^{-2.8}\,\rm Z_\odot are dominated by metal enrichment from PopIII stars and should preferentially host GRBII\rightarrowIII. Hence, measured GRB metal content below this limit could represent a strong evidence of enrichment by pristine stellar populations. We discuss how to discriminate PopIII metal enrichment on the basis of various abundance ratios observable in the spectra of GRBs' afterglows. By employing such analysis, we conclude that the currently known candidates at redshift z6z\simeq 6 -- i.e. GRB 050904 \cite[][]{2006Natur.440..184K} and GRB 130606A \cite[][]{2013arXiv1312.5631C} -- are likely not originated in environments pre-enriched by PopIII stars.Comment: 9 pages, 7 figures; MNRAS accepte

    Constraining the PopIII IMF with high-z GRBs

    Get PDF
    We study the possibility to detect and distinguish signatures of enrichment from PopIII stars in observations of PopII GRBs (GRBIIs) at high redshift by using numerical N-body/hydrodynamical simulations including atomic and molecular cooling, star formation and metal spreading from stellar populations with different initial mass functions (IMFs), yields and lifetimes. PopIII and PopII star formation regimes are followed simultaneously and both a top-heavy and a Salpeter-like IMF for pristine PopIII star formation are adopted. We find that the fraction of GRBIIs hosted in a medium previously enriched by PopIII stars (PopIII-dominated) is model independent. Typical abundance ratios, such as [Si/O] vs [C/O] and [Fe/C] vs [Si/C], can help to disentangle enrichment from massive and intermediate PopIII stars, while low-mass first stars are degenerate with regular PopII generations. The properties of galaxies hosting PopIII-dominated GRBIIs are not very sensitive to the particular assumption on the mass of the first stars.Comment: 9 pages, 4 figure

    Metal and molecule cooling in simulations of structure formation

    Full text link
    Cooling is the main process leading to the condensation of gas in the dark matter potential wells and consequently to star and structure formation. In a metal-free environment, the main available coolants are H, He, H2_2 and HD; once the gas is enriched with metals, these also become important in defining the cooling properties of the gas. We discuss the implementation in Gadget-2 of molecular and metal cooling at temperatures lower that 104K\rm10^4 K, following the time dependent properties of the gas and pollution from stellar evolution. We have checked the validity of our scheme comparing the results of some test runs with previous calculations of cosmic abundance evolution and structure formation, finding excellent agreement. We have also investigated the relevance of molecule and metal cooling in some specific cases, finding that inclusion of HD cooling results in a higher clumping factor of the gas at high redshifts, while metal cooling at low temperatures can have a significant impact on the formation and evolution of cold objects.Comment: 9 pages, plus appendices. Revised version. MNRAS accepte

    Radiative feedback and cosmic molecular gas: the role of different radiative sources

    Get PDF
    We present results from multifrequency radiative hydrodynamical chemistry simulations addressing primordial star formation and related stellar feedback from various populations of stars, stellar energy distributions (SEDs) and initial mass functions. Spectra for massive stars, intermediate-mass stars and regular solar-like stars are adopted over a grid of 150 frequency bins and consistently coupled with hydrodynamics, heavy-element pollution and non-equilibrium species calculations. Powerful massive population III stars are found to be able to largely ionize H and, subsequently, He and He+^+, causing an inversion of the equation of state and a boost of the Jeans masses in the early intergalactic medium. Radiative effects on star formation rates are between a factor of a few and 1 dex, depending on the SED. Radiative processes are responsible for gas heating and photoevaporation, although emission from soft SEDs has minor impacts. These findings have implications for cosmic gas preheating, primordial direct-collapse black holes, the build-up of "cosmic fossils" such as low-mass dwarf galaxies, the role of AGNi during reionization, the early formation of extended disks and angular-momentum catastrophe.Comment: 19 pages on MNRA

    Complex Permittivity Determination from Measured Scattering Parameters of TEM Waveguides

    Get PDF
    This paper addresses the deembedding of the propagation function of waveguides from the scattering responses of setups composed of TEM waveguides terminated by launchers that introduce generic discontinuities. The de-embedding is aimed at estimating the permittivity of dielectric samples from the scattering responses of waveguides including the samples. The de-embedding is based on the double-delay method, that is applied to setups involving different launchers

    Population III stars and the Long Gamma Ray Burst rate

    Full text link
    Because massive, low-metallicity population III (PopIII) stars may produce very powerful long gamma-ray bursts (LGRBs), high-redshift GRB observations could probe the properties of the first stars. We analyze the correlation between early PopIII stars and LGRBs by using cosmological N-body/hydrodynamical simulations, which include detailed chemical evolution, cooling, star formation, feedback effects and the transition between PopIII and more standard population I/II (PopII/I) stars. From the Swift observed rate of LGRBs, we estimate the fraction of black holes that will produce a GRB from PopII/I stars to be in the range 0.028<f_{GRB}<0.140, depending on the assumed upper metallicity of the progenitor. Assuming that as of today no GRB event has been associated to a PopIII star, we estimate the upper limit for the fraction of LGRBs produced by PopIII stars to be in the range 0.006<f_{GRB}<0.022. When we apply a detection threshold compatible with the BAT instrument, we find that the expected fraction of PopIII GRBs (GRB3) is ~10% of the full LGRB population at z>6, becoming as high has 40% at z>10. Finally, we study the properties of the galaxies hosting our sample of GRB3. We find that the average metallicity of the galaxies hosting a GRB3 is typically higher than the critical metallicity used to select the PopIII stars, due to the efficiency in polluting the gas above such low values. We also find that the highest probability of finding a GRB3 is within galaxies with a stellar mass <10^7 Msun, independently from the redshift.Comment: 8 pages,3 figures. Submitted to MNRAS, revised version after referee's comment

    The Overlooked Potential of Generalized Linear Models in Astronomy - I: Binomial Regression

    Get PDF
    Revealing hidden patterns in astronomical data is often the path to fundamental scientific breakthroughs; meanwhile the complexity of scientific inquiry increases as more subtle relationships are sought. Contemporary data analysis problems often elude the capabilities of classical statistical techniques, suggesting the use of cutting edge statistical methods. In this light, astronomers have overlooked a whole family of statistical techniques for exploratory data analysis and robust regression, the so-called Generalized Linear Models (GLMs). In this paper -- the first in a series aimed at illustrating the power of these methods in astronomical applications -- we elucidate the potential of a particular class of GLMs for handling binary/binomial data, the so-called logit and probit regression techniques, from both a maximum likelihood and a Bayesian perspective. As a case in point, we present the use of these GLMs to explore the conditions of star formation activity and metal enrichment in primordial minihaloes from cosmological hydro-simulations including detailed chemistry, gas physics, and stellar feedback. We predict that for a dark mini-halo with metallicity 1.3×104Z\approx 1.3 \times 10^{-4} Z_{\bigodot}, an increase of 1.2×1021.2 \times 10^{-2} in the gas molecular fraction, increases the probability of star formation occurrence by a factor of 75%. Finally, we highlight the use of receiver operating characteristic curves as a diagnostic for binary classifiers, and ultimately we use these to demonstrate the competitive predictive performance of GLMs against the popular technique of artificial neural networks.Comment: 20 pages, 10 figures, 3 tables, accepted for publication in Astronomy and Computin

    Dark Matter Halo Environment for Primordial Star Formation

    Full text link
    We study the statistical properties (such as shape and spin) of high-z halos likely hosting the first (PopIII) stars with cosmological simulations including detailed gas physics. In the redshift range considered (11<z<1611 < z < 16) the average sphericity is =0.3±0.1 = 0.3 \pm 0.1, and for more than 90% of halos the triaxiality parameter is T0.4T \lesssim 0.4, showing a clear preference for oblateness over prolateness. Larger halos in the simulation tend to be both more spherical and prolate: we find sMhαss \propto M_h^{\alpha_s} and TMhαTT \propto M_h^{\alpha_T}, with αs0.128\alpha_s \approx 0.128 and αT=0.276\alpha_T= 0.276 at z = 11. The spin distributions of dark matter and gas are considerably different at z=16z=16, with the baryons rotating slower than the dark matter. At lower redshift, instead, the spin distributions of dark matter and gas track each other almost perfectly, as a consequence of a longer time interval available for momentum redistribution between the two components. The spin of both the gas and dark matter follows a lognormal distribution, with a mean value at z=16 of =0.0184 =0.0184, virtually independent of halo mass. This is in good agreement with previous studies. Using the results of two feedback models (MT1 and MT2) by McKee & Tan (2008) and mapping our halo spin distribution into a PopIII IMF, we find that at high-zz the IMF closely tracks the spin lognormal distribution. Depending on the feedback model, though, the distribution can be centered at 65M\approx 65 M_\odot (MT1) or 140M\approx 140 M_\odot (MT2). At later times, model MT1 evolves into a bimodal distribution with a second prominent peak located at 3540M35-40 M_\odot as a result of the non-linear relation between rotation and halo mass. We conclude that the dark matter halo properties might be a key factor shaping the IMF of the first stars.Comment: 10 pages, 6 figures, accepted for publication in MNRA

    Robust PCA and MIC statistics of baryons in early minihaloes

    Get PDF
    We present a novel approach, based on robust principal components analysis (RPCA) and maximal information coefficient (MIC), to study the redshift dependence of halo baryonic properties. Our data are composed of a set of different physical quantities for primordial minihaloes: dark matter mass (M-dm), gas mass (M-gas), stellar mass (M-star), molecular fraction (x(mol)), metallicity (Z), star formation rate (SFR) and temperature. We find that M-dm and M-gas are dominant factors for variance, particularly at high redshift. Nonetheless, with the emergence of the first stars and subsequent feedback mechanisms, x(mol), SFR and Z start to have a more dominant role. Standard PCA gives three principal components (PCs) capable to explain more than 97 per cent of the data variance at any redshift (two PCs usually accounting for no less than 92 per cent), whilst the first PC from the RPCA analysis explains no less than 84 per cent of the total variance in the entire redshift range (with two PCs explaining greater than or similar to 95 per cent anytime). Our analysis also suggests that all the gaseous properties have a stronger correlation with M-gas than with M-dm, while M-gas has a deeper correlation with x(mol) than with Z or SFR. This indicates the crucial role of gas molecular content to initiate star formation and consequent metal pollution from Population III and Population II/I regimes in primordial galaxies. Finally, a comparison between MIC and Spearman correlation coefficient shows that the former is a more reliable indicator when halo properties are weakly correlated
    corecore